Graphene materials: Role in Energy Storage, Mobility and Coating & Inks

5th HVM New Materials 2019, 6-7 November Cambridge, UK

www.cir-strategy.com/events

Dr. Siva Bohm FRSC, The Royals Society Industry Fellow & CAMI Ltd (CTO)

Quality OF Graphene play Key - Performance

Solid-State Li-Ion Batteries & Silicon Anodes

Global Solid-State Battery Market – Competitive Landscape

- Solid Power Inc.
- Maxwell Technologies
- Cymbet Corporation
- Toyota Motor Corporation
- Infinite Power Solutions, Inc.
- Robert Bosch GmbH
- Planar Energy Devices, Inc.
- Front Edge Technology, Inc
- Panasonic Corporation

SILICON ANODES: NANOTECHNOLOGY COMPENSATE VOLUME CHANGE

 $SiO_X (X \approx 1)$ Si nanodomains (ca. 4 nm diameter) in SiO₂ matrix SiO₂

Si Nanoparticles

Small diameter (<150 nm) prevents crack formation

Si Nanowires

Small diameter (<150 nm) prevents crack formation, anisotropic structure

Si-C Core-Shell Composites Void volume inside core is protected from electrolyte access by shell

SILICON ANODES PARTICLE SIZE: ADVANTAGES & DISADVANTAGES

SiO_x (X ≈ 1) Advantages Low surface area, high technology readiness level

Potential Disadvantage Parasitic reactions caused by SiO₂ Si Nanoparticles

Advantages High capacity, tailored surface

Potential Disadvantage Elevated surface area may cause parasitic reactions Advantages High capacity, favorable Li-ion diffusion

Si Nanowires

Potential Disadvantage Elevated surface area may cause parasitic reactions Si-C Core-Shell Composites Advantages Low surface area, high capacity

Potential Disadvantage Large number of process steps

SILICON CARBON CORE-SHELL COMPOSITES PLAYERS

Shanshan

Multi-step procedure to generate Si-graphite-carbon black core with void space, protected by pitch-based shell.

Samsung

CVD-based formation of graphene-Si core and graphene shell in one process.

 mixing with isopropanol 2) spray-drying (200 °C)
CVD/thermal treatment (CHs, multistep temp. protocol, max. 1,000 °C)

graphene-coated porous graphene-Si core-shell composite

LOW COST FUEL CELL DEVELOPMENT

Bipolar plate represents ~50%, of total cost of a fuel cell stack.

Fuel Cell Bus

Using stainless steel ("SS") offers lower cost bipolar plates, but requires coating solutions for oxidation, conductivity and other issues

Royal Society Industry Fellowship at the University of Cambridge

IMPROVED CORROSION RESISTANCE BIPOLAR PLATE

Corrosion resistance of SS316 plate improved x 500 Corrosion resistance of SS304 plate improved x 20

Corrosion resistance improved x 500 in 1M H2SO4 acid

UNIVERSITY OF CAMBRIDGE

THE ROYAL SOCIETY

CONDUCTIVITY AND ADHESION OF HYBRID GRAPHENE INK

Four point probe measurement on glass Sheet resistance 1 Ohm/sq

Crosshatch test ASTM D⁹3359 – 97 Good adhesion on various substrates, incl. SS & PET

Batteries vs Fuel Cells

	Batteries	Fuel cells
Advantages	Smaller and lighter High energy density Low self discharge Longer life scan	Consistent output High level of Energy efficiency Significantly reduced/zero CO2 emission Better fuel economy Effective Energy Storage
Disadvantages	Sensitive to temperature Aging effect Safety concern Deep discharge	Costly to manufacture, storage and transport, Hydrogen station availability in UK Not suitable for every situation Temperature regulation is required

Cost of Corrosion on Economic Scale is Significant!

United Kingdom

\$2,279 billion GDP (2007): Annual cost of corrosion: \$70.6 billion Australia GDP (2008): \$920 billion \$70.6 billion Annual cost of corrosion: USA **GDP** (2007) \$13,840 billion \$429 billion Annual cost of corrosion: All figures US Dollars

Reference: NACE figures:

http://events.nace.org/publicaffairs/cocorrindex.asp

GDP figures: <u>http://www.economywatch.com/</u>

Safety is the Key, Can Graphene contribute?

CONSULTANCY

CHOICE OF W&D IS IMPORTANT-GRAPHENE W&D TECHNOLOGY

W&D Additive – Concentration play key role

FUNCTIONALISATION-GRAPHENE DISPERSION TECHNOLOGY IMPACT of incorrect W&D additives in Water bone Primers

Correct W&D for WB Coating

Wrong W&D for WB Coating (everything else constant)

Source: Atlanta - BYK

2018 Market Snapshot

Conductive Ink \$1.9Bn

- Booming PV market in 2017
- New markets: In Mold Electronics, Stretchable inks, die attach, shielding

Printed & Flexible Sensors \$3.6Bn

- Mature: Glucose test strips, force sensors, capacitive sensors
- Establishing: Organic photodetectors, printed temperature sensors, gas sensors

Logic, Batteries, OPV \$21M

Companies become more vertical, creating new markets OLED Lighting \$50M Aesthetic & capability

differentiation

Next generation Automotive/Defence and organic electronics – G-Inks

Automotive

Automotive

Communication

Flexible electronics

Sport and Fitness

Radiator – heat transfer

Motion Analysis

Transport The system measures: Breath Activity Mart materials seamlessly integrated the seat belt (SPU) Signal Process Llait

Fatigue Monitoring

Safety : Defence/Protection

Smart Garments

Copyright CAMI Consultancy Ltd, UK 07-11-2019

- CAMBRIDGE ADVANED MATERIALS INNOVATION (CAMI) CONSULTANCY LTD
- **ALLIA FUTURE BUSINESS CENTRE**
- **KINGS HEDGES ROAD , CAMBRIDGE**
- **CB4 2HY , UNITED KINGDOM**
- TEL: +447766304833 (SIVA)

EMAIL:S.BOHM@CAMICONSULTANCY.COM