Titles should be in capitals
Administrator, 03/11/2010
AGENDA

- Background
- Government Intervention
- Market trends
- Infra Structure
- Battery technologies
- Lotus View / Challenges
MARKET TRENDS – EV’S TO HYBRID AND BACK

• First electric vehicle - Robert Anderson 1830’s
• First hybrid vehicle – Ferdinand Porsche in 1900
 – Series hybrid, Wheel hub motors
 – 300Ah battery, 16hp engine
• Drive configurations / terminology
 – Micro hybrid - Start/stop technology
 – Mild hybrid - Start/stop technology plus torque assist
 – Parallel hybrid - Both IC engine & electric motor can drive the vehicle in Parallel
 – Series hybrid - IC engine drives a generator, wheels driven by electric motor
 – SHEV, EREV or REEV
 – Multi Mode / power split system - combine the above functionality
 – Battery Electric Vehicle - BEV
• Simpler systems offer less functionality & fuel efficiency, but are easier & cheaper to realise
• Hybrid types - Air, kinetic, hydraulic and electric
LOTUS BACKGROUND

• Lotus involved with over 20 hybrid / electric vehicle projects since 1990
• Over 17 years of hybrid controls experience
• Utilising a range of alternative powertrain architectures
 – Full EV, micro hybrids, stop / start, series and parallel hybrids
• From drivetrain design and concept vehicle builds / technology demonstrators to full production vehicle programmes
INDUSTRY CHALLENGES

• Lower carbon footprint
 – Global warming and legislation
• Less reliance on fossil fuels
 – Fuel reserves and energy security.
• Affordable technologies for the consumer
 – Cost-effective solutions, economical to use.
THE REALITY – THE PREDICTED SITUATION IN 2020

• The number of vehicles in worldwide use will have doubled to 1.2 billion*
• Only 7.3% of sales in 2020 are expected to be BEV / HEV vehicles
 – BEV @ 1.8%*
 – HEV @ 5.5%*
• Average CO2 emissions per vehicles are expected to reduce by just 19%
• CO2 emissions from vehicles will continue to rise at a significant rate (+60% by 2020?)
• *Source: J.D. Power : Drive Green 2010: More Hope than Reality?, November 2010
BARRIERS TO BEV / HEV GROWTH

- Total cost of vehicle ownership
- Range Anxiety of EVs
- Recharging times
- Lack of Infrastructure
- Power and performance
- Battery life and costs
- Rapid rate of technology development may render new vehicle obsolete
- Uncertainty regarding residual values of EV.
- Lack of standardisation may render new vehicle obsolete (betamax video)
GOVERNMENT INTERVENTIONS

- Emissions legislation (target is an average CO2 level < 130 grams/km)
 - Punitive charges for non compliance
- Increasing levels of Fuel duty taxation
 - In 2008 UK government claimed over £24 billion in fuel duty
- Grants for companies developing technologies to support a low carbon economy
- Grants for the development of low carbon infrastructure
- Taxation of vehicles is based on their carbon emissions]
 - Reduction and rebates for users of low Carbon vehicles
- Subsidised costs for users of low carbon vehicles
 - Government funded discounts
 - Congestion charge waiver
 - Parking fees
 - Insurance benefits
GOVERNMENT INTERVENTION – EUROPE

Electric Vehicle Market: Subsidies and Incentives Offered Across Europe (Europe), 2008-2015

Norway: No tax, No VAT, up to €3400 incentive, no import duty

Sweden: Subsidy - 40% price difference, no acquisition

UK: No congestion charges, low insurance premiums, free parking, tax discounts

Denmark: Heavy Tax incentives, insurance benefits

Germany: Five year tax waivered

France: Up to €3200 subsidy, road tax concessions

Austria: Discounts up to €1100 or 15% purchase price, 50% VAT reduction, waivered motor tax

Spain: Up to €10000 financial incentives

Italy: 65% of extra cost subsidy, 40-50% financial incentives, no tax, 50% insurance discount

Greece: Heavy tax exemptions, low premiums

Source: AVERE
WHAT DOES THE UK MOTORIST CURRENTLY PAY?

- Figures are 2007/2008 from HM Treasury Ev219
 - Fuel duty £24.9 billion
 - Vehicle Excise Duty £5.4 billion
 - Tolls & congestion charge £0.6 billion
 - VAT on Fuel £6.8 billion
 - VAT on vehicle sales £6.9 billion
 - Insurance premium tax £1.0 billion
 - Company car tax (& fuel benefit charge) £2.5 billion
 - TOTAL £48 billion / year

- Wholesale loss of this revenue with additional costs to subsidise green motoring is in the longer term not sustainable. It’s only affordable when take up is at such a low level that it doesn’t make a difference!

IF THE GOVERNMENT CAN’T AFFORD TO KEEP GIVING AWAY CARROTS THEY WILL END UP USING A MUCH BIGGER STICK.
• HEV drivers are on average*
 – 3-5 years older than buyer of a gasoline / diesel car
 – Generally have higher level of education (40% with a postgraduate degree)
 – Will have a higher income than a gasoline vehicle buyer (but lower than diesel)
• Of all prospective customers interested in buying an HEV the level of interest declines by 50% once they are advised of the price premium for an HEV*
• Green motoring is a lifestyle choice of the affluent or the very committed.

*Source: J.D. Power : Drive Green 2010: More Hope than Reality?, November 2010
PURCHASE CONSIDERATIONS

Buying considerations for “US HEV” owners compared to “All US vehicle” purchasers

<table>
<thead>
<tr>
<th>Issue</th>
<th>HEV</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas mileage</td>
<td>90%</td>
<td>40%</td>
</tr>
<tr>
<td>Environmental</td>
<td>70%</td>
<td>10%</td>
</tr>
<tr>
<td>Technology</td>
<td>70%</td>
<td>32%</td>
</tr>
<tr>
<td>Comfort</td>
<td>36%</td>
<td>50%</td>
</tr>
<tr>
<td>Styling</td>
<td>24%</td>
<td>47%</td>
</tr>
<tr>
<td>Reliability</td>
<td>57%</td>
<td>63%</td>
</tr>
</tbody>
</table>

HEV buyers

- Concern for environment
- See technology as solution
- Self thinkers
- Early adopters
- Life style choice
THE MOVE FROM ICE TO EV

- Increased hybridisation of light duty vehicles
- Move to plug in multi mode hybrids and Series hybrid systems in the next 5 years
- Increase in City EVs in Europe and REEVs in North America
- Initial products have been niche products for high performance / city cars / commercial vehicles.
CITY CAR BEV

- Small electric vehicles developing from small niche vehicles (Neighbourhood Electric Vehicles) into main stream product City EVs
- Limited range and performance optimised for urban use
 - Small 10-45kW motors
 - Limited capacity lead acid / lithium batteries.
- Likely to be 2nd or 3rd car
- User Incentivised by taxation / cost subsidy
 - Free parking (£1.10- £4.40/hour)
 - No congestion charge (£8/day saving)
- Source London – charging Infrastructure
 - Launching spring 2011
 - 1,300 public charging points London by 2013
 - £100 annual membership fee for charging
- Gem e2, REVA G-Wiz, to NICE, iMEV, Smart EV, Think etc
PROTON EMAS WITH LOTUS SERIES HYBRID DRIVETRAIN
SPORTS CARS HEV/ BEV

- Very high performance vehicles: 85-440kW, top speed of 80 - 130mph & 0-60 in 4s.
- Wealthy Early adopters – Technology driven - “Seen to be Green” - exclusivity
- Socially acceptable sports car – performance without guilt
- High price delivers exclusivity and status
- High end Nickel zinc, Li ion battery, range 100 - 200 miles,
- Tesla roadster / Model S, Dodge EV, ZAP Alias, Fiskar
EVORA 414E HYBRID
COMMERCIAL TRANSPORT

- Limited range and speed suitable for fixed base operation – urban delivery/service providers (supermarkets, mail, local councils, electricity companies …) - 100-150 mile range at 50mph (max) and 1-2 tonne load capacity
- PR corporate benefits – “seen to be Green”
- Incentives on tax/congestion charge makes it viable
- Low running & servicing costs – high utilisation (eg taxi)
- 75-120kW motor and Sodium Nickel Chloride / Lithium phosphate batteries
HYDROGEN FUEL CELL TAXI
MAINSTREAM CARS

• Most commercially successful products are those that do not compromise range & performance – currently dominated by parallel hybrid (Prius)
• Range extension of EV with specialised ICE generator engines
• Mild hybrid / stop start systems
• Initial pure EV passenger cars attempting to break though into mainstream.
 – Extending range on EV city car
 – Nissan leaf
 – Volt / Ampera
 – Focus EV (2012?)
The challenge facing electric vehicles is how to make them cost effective and durable
- Lithium ion cell technology, modular battery packs, Range enhancement, hub motors & BMS

Initial applications luxury car market, city cars (range is less important) & light commercial vehicles

Focus on micro & mild start/stop systems and series hybrids

Reduction of non propulsion systems energy usage
- HVAC, Brakes, steering, infotainment, etc

Range extender engines - new engine architecture – constant speed / low cost

Battery Electric hybridisation is not the whole picture
- Flywheels & super capacitors are potentially more efficient in Micro hybrids
- Hydraulic hybrids have potential in light and heavy duty commercial applications, without the disadvantages of electrical systems
KEY AREAS OF ACTIVITY FOR LOTUS

- Series hybrid technology (414e, Hydrogen taxi)
- EV vehicle development – City cars - system integration & control
- Low weight vehicle architectures for low carbon vehicles
- High efficiency range extender engine for REEV
- Torque vectoring system & Navigation based energy management strategies
- Low power consumption systems – Hotel loads
- Driving dynamic effects of EV/HEV (vehicle dynamics / comfort / NVH / driver feedback)
- External noise generation for EV pedestrian safety
- Stop / start micro hybrid
REDDUCING CARBON FOOTPRINT – AN EXAMPLE

- Car driver who has 50 mile commute into London = 100 miles/day = 25,000 miles/year
- Plus 5,000 miles / year for leisure at weekends.
- 2.0litre Ford Focus @169gCO2/km for all travel.
- Overall tailpipe CO2 emissions = 6760 kg CO2/year
- Considering Changing to a Nissan Leaf for commuting 25000 miles @ 0gCo2/km and buying a 5.0litre Jaguar XK8 for weekend 5000 leisure miles@ 292gCO2/km
- New overall tailpipe CO2 = 2336 kg CO2/year a 66% reduction.
- A significant positive environmental change to his carbon footprint!
Now however he looks at the costs of the EV and decides he will use public transport instead.

This is a more environmentally friendly solution:
- It saves the CO2 used to produce the EV in the first place
- It saves electricity to run the EV*
- It reduces overall congestion

*Note: Although full EVs have zero CO2 tailpipe emissions the generation of electricity in the UK will give these vehicles an equivalent level of around 90g CO2/km.

BUT now if he wants to run his Jaguar at the weekend he is branded irresponsible and harming the environment.
WHAT SHOULD LEGISLATORS DO?

• High CO2 cars does not consequently result in high CO2 production – CO2 production depends on usage.

• CO2 to build a conventional vehicle is often less than to produce an EV due to high energy use in producing the battery.

• WHEN THERE IS A HOSEPIPE BAN THE TARGET IS TO REDUCE WATER CONSUMPTION - IT DOESN'T MAKE IT ILLEGAL FOR B&Q TO SELL HOSEPIPES!

• To deliver the philosophy that the “polluter pays” the taxation on energy consuming devices should be based on the total release of additional (non renewable) CO2.

• Taxation of a product at point of sale can drive an attitude of –” I've paid for it – I may as well use it as much as possible”.

• Ultimate scenarios of an individual carbon allowances (rationing) and individual carbon trading could be the ultimate result in a free market economy.
WHAT IS NEEDED?

- Legislation and policies that reduces the production of CO2
 - Low carbon transport promotion
 - Electricity is not zero emissions
 - Range extended EV’s are strong condenders
 - Tax the Carbon in the fuel not the vehicle
 - Incentivise use of public transport
 - Affordable policies
- Breakthrough in battery technology
 - Lower costs
 - Reduce weight
 - Improve performance
- Charging Infrastructure development
 - Standardisation
 - Fast charging availability
 - Commercial models
- Low Carbon electricity production
 - Otherwise EV’s are a CO2 illusion
ENGINEERING

THANK YOU

WWW.LOTUSCARS.COM/ENGINEERING