Wafer scale production of graphene: opportunities and challenges

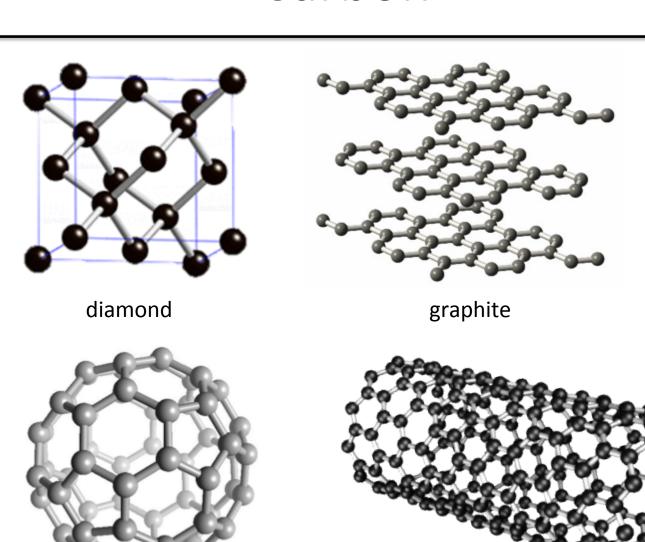
Richard van Rijn

HVM Graphene Conference 5 November 2013

<u>hvm-uk.com</u>

Who are we

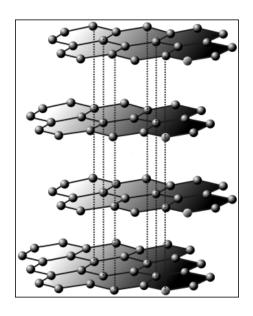
- Applied Nanolayers BV
 - Company building a 200 mm CVD wafer production line for graphene in The Netherlands.

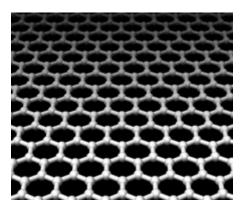


Outline

- Graphene background and properties
- Production methods and challenges
- Transfer methods
- Quality control

Carbon

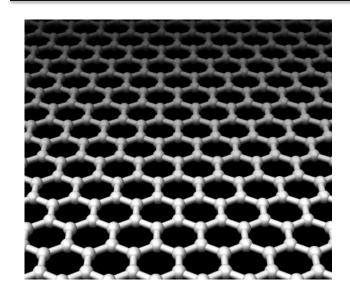


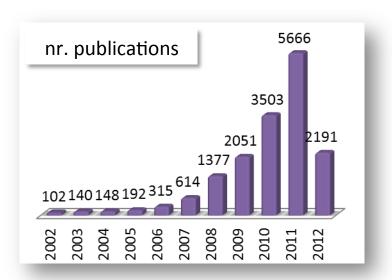

bucky balls nanotubes

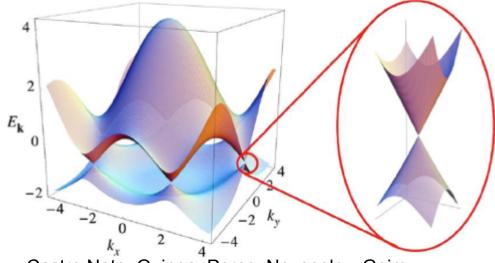
Applied Nanolayers

Graphene

graphite




'dream material':

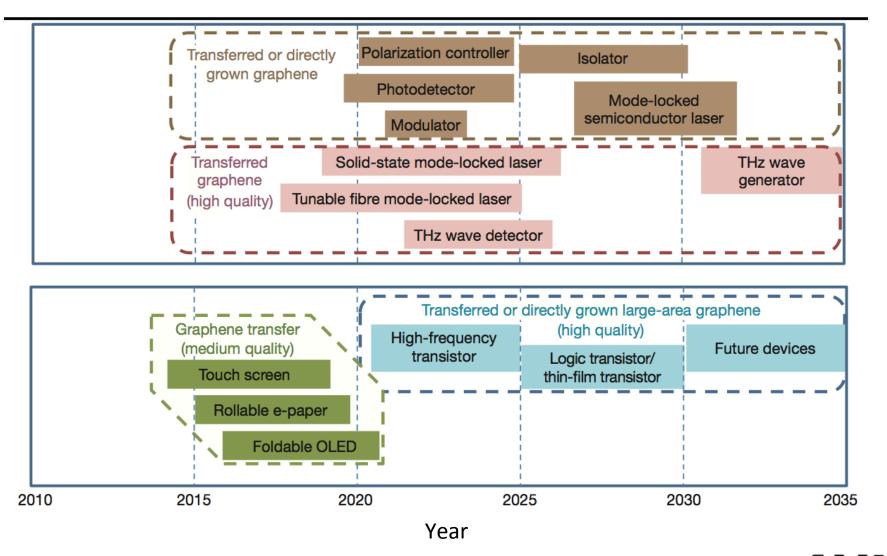

- Thinnest possible material!
 - o first 'proposed' in 1947 (P.R. Wallace)
- Many special properties
 - first explored in 2004 (Geim et al.)

Graphene trivia

Castro Neto, Guinea, Peres, Novoselov, Geim, *Rev.Mod.Phys.* **81**, 109 (2009)

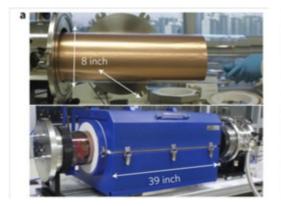
- Electrons behave as 'massless Dirac fermions': $E = \hbar v_F \sqrt{k_x^2 + k_y^2}$
- High electron (and hole) mobility
- Promising for future (flexible) electronics

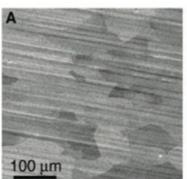
Properties

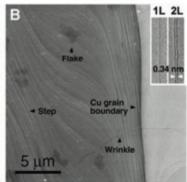

Special properties and applications:

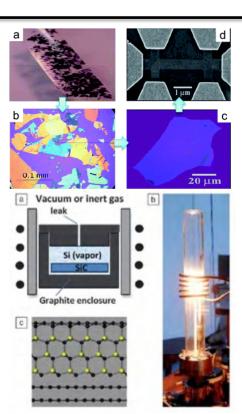
- High electron (hole) mobility
 200,000 cm²V⁻¹s⁻¹: future chip technology addition to/(replacement of silicon?);
 100 GHz transistor, 10 GHz mixer (IBM); low spin-orbit interaction (spintronics?)
- Strong and flexible
 1 TPa: (200 x steel): flexible electronics, MEMS resonators, sensors, membranes, coatings, enforcing material in composites, graphene 'paper'
- High thermal conductivity
 5000 Wm⁻¹K⁻¹: heat sink for electronic circuits
- Optical properties
 graphene-based laser; 2.3% absorption of white light through single graphene layer;
 transparent conductor: replacement of indium-tin-oxide (touch screens)
- Chemically inert protective coating: anti-corrosive, anti-adhesive, anti-friction/wear; impermeable
- Efficient in charge storage
 'ultra-capacitor': replacement of lithium batteries
- Efficient in hydrogen storage energy storage medium
- o Bio-compatible bio-sensors, bio-compatible coatings, anti-bacterial

Applications

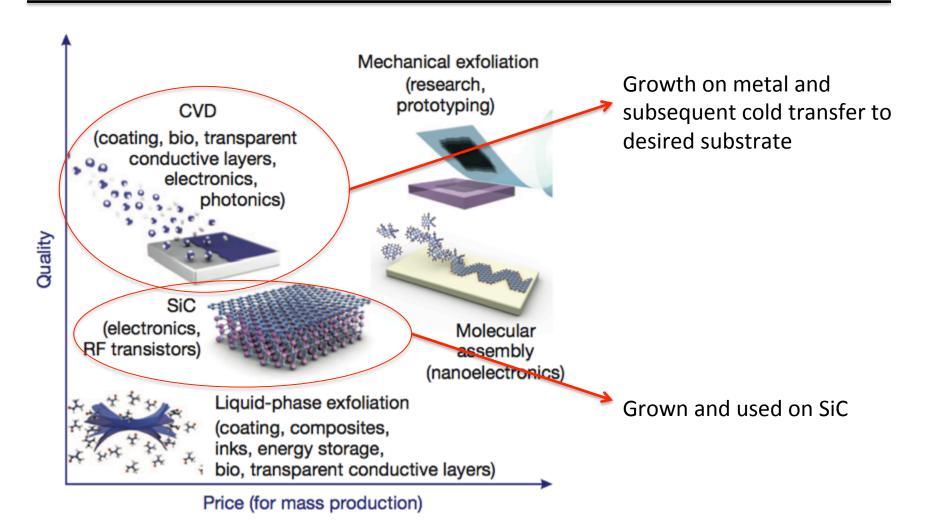



Production methods


Mechanical exfoliation


Thermal decomposition of SiC

CVD on transition metals



Productions methods

Method	Crystallite size (μm)	Sample size (mm)	Mobility (ambient) (cm² V ⁻¹ s ⁻¹)	Applications
Mechanical exfoliation	> 1000	>1	> 2.105	Research
Chemical exfoliation	≤ 0.1	Infinite as overlapping flakes	100	Coating, paint/ink, composites, transparent conductive layers, energy storage, bioapplications
Chemical exfoliation via graphene oxide	~ 100	Infinite as overlapping flakes	1	Coating, paint/ink, composites, transparent conductive layers, energy storage, bioapplications
CVD	1000	~ 1000	10000	Photonics, nanoelectronics, transparent conductive layers, sensors, bioapplications
SiC	50	100	10000	High frequency transistors and other electronic devices

Production methods

CVD graphene

- Growth on metals:
 - Single crystals
 - Foils
 - Epitaxial layers
- Metals:
 - Cu (cheap, low carbon solubility, SLG)
 - Ni (cheap, high carbon solubility, MLG)
 - Rh, Ru, Pt, Au, Ir, etc. (expensive)
- Methods
 - Thermal CVD
 - PE CVD
 - Carbon segregation

Graphene as a platform

- 2D materials used with graphene:
 - h-BN (insulator)
 - MoS2 (semiconductor)
 - Many more...
- CVD production of h-BN layers is possible.
- h-BN and graphene can be grown or transferred on top of each other.
- Hybrid h-BN/graphene layers can also be synthesized.

Live STM studies of graphene growth

High speed

Speed: video-STM
 0.01 − 25 frames/s
 (256x256 pixels) x2

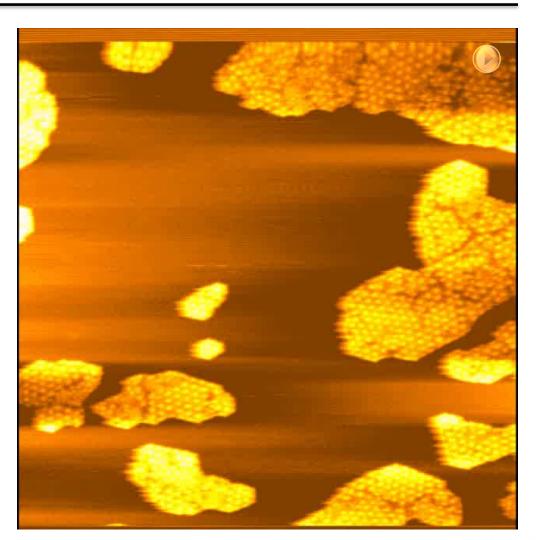
Variable temperature

Sweep: - full T-range:

same area in sight' over 300 K

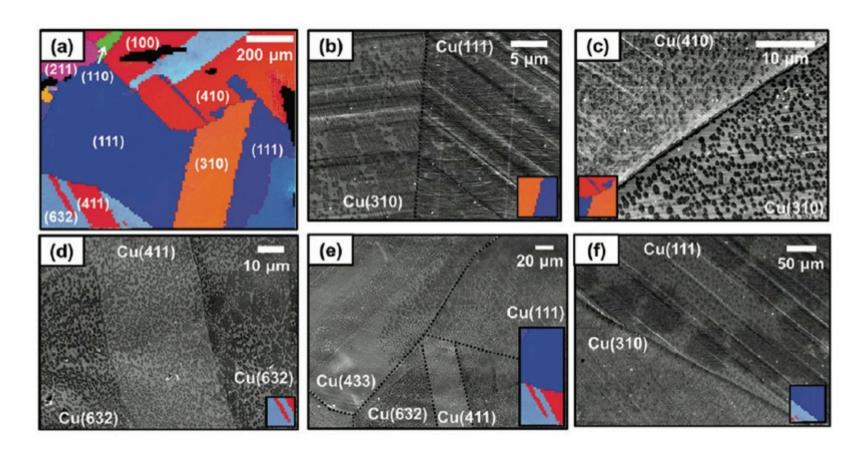
'Secret':- finite-element analysis

Hoogeman *et al.*, Rev.Sci.Instrum. **69** (1998) 2072 M.J. Rost *et al.*, Rev.Sci.Instrum. **76** (2005) 053710



Graphene growth on rhodium

Start: Rh(111) seeded with graphene at RT by C₂H₄


Movie: further C₂H₄ exposure at 975 K at 3X10⁻⁹ ~1 X10⁻⁸ mbar

Real time: 76mins $170 \times 170 \text{nm}^2$ I = 50 pA V = -1.84 V


Substrate orientation: or the problem with foil

Cu(111) gives highest quality graphene

Crystalline Substrate Orientation

Cu(100) gives four different graphene domains in one graphene island

FIGURE 3. Bright (a) and dark field (b—e) LEEM images of a large graphene island on Cu(100) showing the spatial distribution of rotational variants. The graphene (01) direction is rotated by (b) 28°, (c) 2°, (d) 8°, and (e) 42°, relative to Cu(001) (FOV = $20 \mu m$, yellow dashes are the approximate island boundary). Cu step edge accumulation during growth results in a Cu hillock beneath the graphene island, as can be seen in (a). The hillock formation process is illustrated in (f—i).

Grain boundary

Grains and grain boundaries in single-layer graphene atomic patchwork quilts

Pinshane Y. Huang¹*, Carlos S. Ruiz-Vargas¹*, Arend M. van der Zande²*, William S. Whitney², Mark P. Levendorf³, Joshua W. Kevek⁴, Shivank Garg³, Jonathan S. Alden¹, Caleb J. Hustedt⁵, Ye Zhu¹, Jiwoong Park^{3,6}, Paul L. McEuen^{2,6} & David A. Muller^{1,6}

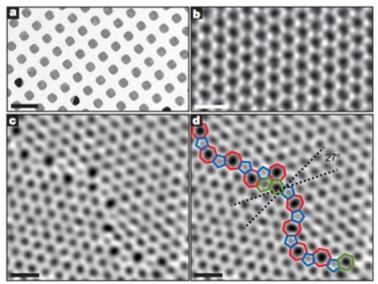


Figure 1 | Atomic-resolution ADF-STEM images of graphene crystals. a, Scanning electron microscope image of graphene transferred onto a TEM grid with over 90% coverage using novel, high-yield methods. Scale bar, 5 μ m. b, ADF-STEM image showing the defect-free hexagonal lattice inside a graphene grain. c, Two grains (bottom left, top right) intersect with a 27° relative rotation. An aperiodic line of defects stitches the two grains together. d, The image from c with the pentagons (blue), heptagons (red) and distorted hexagons (green) of the grain boundary outlined. b–d were low-pass-filtered to remove noise; scale bars, 5 Å.

Grain boundary

Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene

Adam W. Tsen,¹ Lola Brown,² Mark P. Levendorf,² Fereshte Ghahari,³ Pinshane Y. Huang,¹ Robin W. Havener,¹ Carlos S. Ruiz-Vargas,¹ David A. Muller,^{1,4} Philip Kim,³ Jiwoong Park^{2,4}*

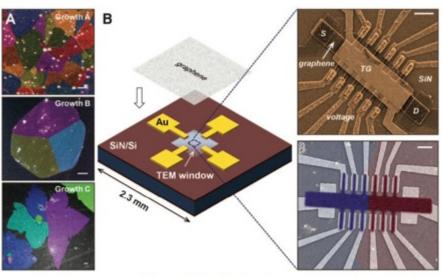
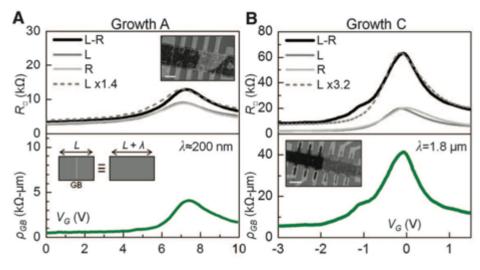
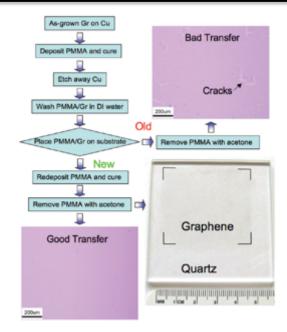



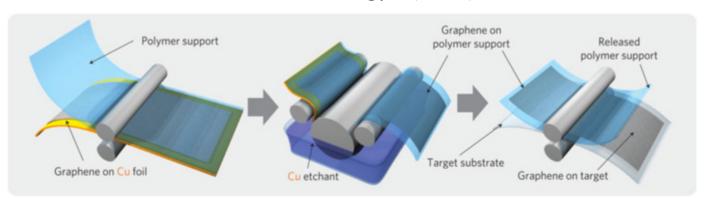
Fig. 1. (A) Composite false-color DF-TEM images of CVD graphene produced using three different growth conditions—A, B, and C—yielding average domain size D of 1, 10, and 50 μm, respectively, in continuous films. (B) (Left) Schematic of specially fabricated TEM chip compatible with electron-beam lithography and electrical measurements. (Top right) SEM image of top-gated, graphene Hall bar device. (Bottom right) Overlaid SEM and DF-TEM images showing device crossing a single GB of two domains from growth C. Scale bars, 1 μm.

Growth method determines grain boundary resistivity

Graphene growth challenges

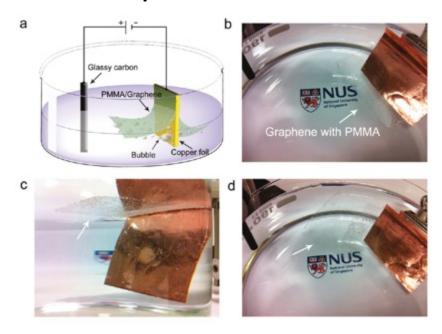

- Control number of layers precisely
- Separate nucleation and growth
- Control domain size
- Control substrate/graphene morphology
- Control Chemical doping

Transfer methods


PMMA assisted wet transfer

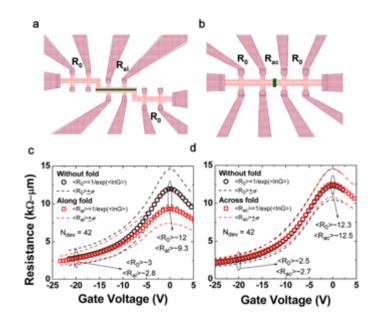
Li et al, Nano Letters 9 (2009)

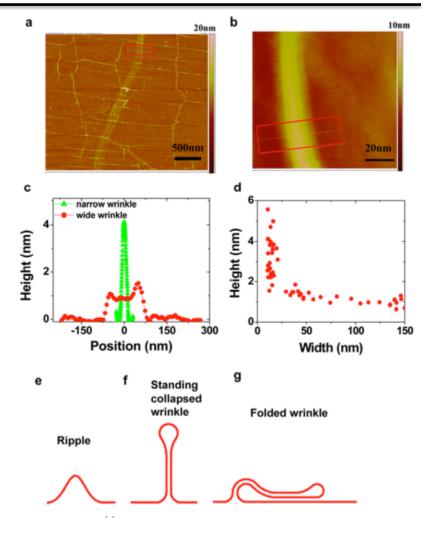
Thermal release tape


Bae et al, Nature Nanotechnology 5 (2010)

Transfer methods

- Electrochemical delamination
 - No etching of (copper) substrate. H₂ used to delaminate PMMA/G film
 - Substrate re-use possible with this method





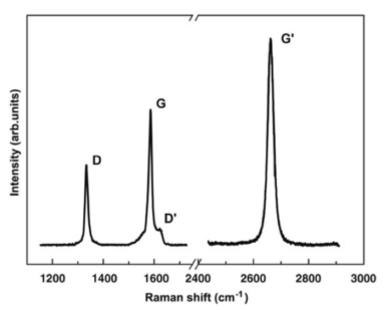
Wang et al, ACS Nano **5** (2011)

Transfer challenges

- Scalability/cost
- Chemical damage
- Mechanical damage
 - Holes, tears, wrinkles

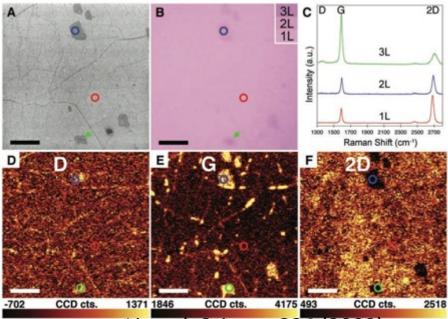
Zhu et al , Nano Lett, 12 (2012)

Quality control


- Graphene quality can relate to different properties:
 - Mobility, sheet resistance, grain size, roughness, defect density
 - Uniformity of different properties:
 - Doping
 - Layer number
 - Grain size
 - Structural defects
 - Morphology
 - Many more...

 'Low quality' and 'high quality' are meaningless without a relation to the aspects of quality they refer to (and which aspects of quality are important for specific applications)

Raman spectrocopy for quality control


L.M. Malard et al. / Physics Reports 473 (2009) 51-87

Local properties taken from Raman spectrum relating to peak shapes, widths, heights and positions of the indicated peaks.

- Number of layers
- Presence of Raman active defects
- Average distance between defects
- Doping

Mapping with micro-Raman

Barriers to industrialization

- Quality control of material
- Integration into manufacturing
- Security of supply
- Material cost
- Short term application
- Control over / tuning of different properties

Closing

- Graphene comes in more than one form.
- Many ways of producing and transferring. These will be specific to certain applications.
- For graphene to be relevant a robust quality analysis chain through manufacturing must guarantee product is always the same!
- ANL is focused on building this chain and starting up a 200 mm production facility in the Netherlands.
- Contact details: r.van.rijn@appliednanolayers.com

