Wafer scale production of graphene: opportunities and challenges

Richard van Rijn

HVM Graphene+ 2014 Conference Oxford, UK 15 May

www.hvm-uk.com

Who are we

- Applied Nanolayers BV
 - Company building a 200 mm CVD wafer production line for graphene in The Netherlands.

Production methods

Mechanical exfoliation

Thermal decomposition of SiC

CVD on transition metals

Productions methods

Method	Crystallite size (μm)	Sample size (mm)	Mobility (ambient) (cm² V ⁻¹ s ⁻¹)	Applications
Mechanical exfoliation	> 1000	>1	> 2.105	Research
Chemical exfoliation	≤ 0.1	Infinite as overlapping flakes	100	Coating, paint/ink, composites, transparent conductive layers, energy storage, bioapplications
Chemical exfoliation via graphene oxide	~ 100	Infinite as overlapping flakes	1	Coating, paint/ink, composites, transparent conductive layers, energy storage, bioapplications
CVD	1000	~ 1000	10000	Photonics, nanoelectronics, transparent conductive layers, sensors, bioapplications
SiC	50	100	10000	High frequency transistors and other electronic devices

Production methods

CVD graphene

- Growth on metals:
 - Single crystals
 - Foils
 - Epitaxial layers
- Metals:
 - Cu (cheap, low carbon solubility, SLG)
 - Ni (cheap, high carbon solubility, MLG)
 - Rh, Ru, Pt, Au, Ir, etc. (expensive)
- Methods
 - Thermal CVD
 - PE CVD
 - Carbon segregation

Graphene as a platform

- 2D materials used with graphene:
 - h-BN (insulator)
 - MoS2 (semiconductor)
 - Many more...
- CVD production of h-BN layers is possible.
- h-BN and graphene can be grown or transferred on top of each other.
- Hybrid h-BN/graphene layers can also be synthesized.

Live STM studies of graphene growth

High speed

Speed: video-STM
0.01 − 25 frames/s
(256x256 pixels) x2

Variable temperature

Sweep: - full T-range:

same area in sight' over 300 K

'Secret':- finite-element analysis

Hoogeman *et al.*, Rev.Sci.Instrum. **69** (1998) 2072 M.J. Rost *et al.*, Rev.Sci.Instrum. **76** (2005) 053710

Graphene growth on rhodium

Start: Rh(111) seeded with graphene at RT by C₂H₄

Movie: further C₂H₄ exposure at 975 K at 3X10⁻⁹ ~1 X10⁻⁸ mbar

Real time: 76mins $170 \times 170 \text{nm}^2$ I = 50 pA V = -1.84 V

Substrate orientation: or the problem with foil

Cu(111) gives highest quality graphene

Crystalline Substrate Orientation

Cu(100) gives four different graphene domains in one graphene island

FIGURE 3. Bright (a) and dark field (b—e) LEEM images of a large graphene island on Cu(100) showing the spatial distribution of rotational variants. The graphene (01) direction is rotated by (b) 28°, (c) 2°, (d) 8°, and (e) 42°, relative to Cu(001) (FOV = $20 \mu m$, yellow dashes are the approximate island boundary). Cu step edge accumulation during growth results in a Cu hillock beneath the graphene island, as can be seen in (a). The hillock formation process is illustrated in (f—i).

Grain boundary

Grains and grain boundaries in single-layer graphene atomic patchwork quilts

Pinshane Y. Huang^{1*}, Carlos S. Ruiz-Vargas^{1*}, Arend M. van der Zande^{2*}, William S. Whitney², Mark P. Levendorf³, Joshua W. Kevek⁴, Shivank Garg³, Jonathan S. Alden¹, Caleb J. Hustedt⁵, Ye Zhu¹, Jiwoong Park^{3,6}, Paul L. McEuen^{2,6} & David A. Muller^{1,6}

Figure 1 | Atomic-resolution ADF-STEM images of graphene crystals. a, Scanning electron microscope image of graphene transferred onto a TEM grid with over 90% coverage using novel, high-yield methods. Scale bar, 5 μ m. b, ADF-STEM image showing the defect-free hexagonal lattice inside a graphene grain. c, Two grains (bottom left, top right) intersect with a 27° relative rotation. An aperiodic line of defects stitches the two grains together. d, The image from c with the pentagons (blue), heptagons (red) and distorted hexagons (green) of the grain boundary outlined. b–d were low-pass-filtered to remove noise; scale bars, 5 Å.

Grain boundary

Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene

Adam W. Tsen,¹ Lola Brown,² Mark P. Levendorf,² Fereshte Ghahari,³ Pinshane Y. Huang,¹ Robin W. Havener,¹ Carlos S. Ruiz-Vargas,¹ David A. Muller,^{1,4} Philip Kim,³ Jiwoong Park^{2,4}*

Fig. 1. (A) Composite false-color DF-TEM images of CVD graphene produced using three different growth conditions—A, B, and C—yielding average domain size D of 1, 10, and 50 μ m, respectively, in continuous films. (B) (Left) Schematic of specially fabricated TEM chip compatible with electron-beam lithography and electrical measurements. (Top right) SEM image of top-gated, graphene Hall bar device. (Bottom right) Overlaid SEM and DF-TEM images showing device crossing a single GB of two domains from growth C. Scale bars, 1 μ m.

Growth method determines grain boundary resistivity

Pilot production comparison

Closing

- Key to further graphene production improvement is the fundamental understanding of growth mechanisms.
- Establish a reliable supply chain for CVD graphene up to 200 mm substrates.
- Engineer for volume production.
- Fully automated QA toolchain.

Contact: r.van.rijn@appliednanolayers.com

