

Flexible Plug and Play

Enabling Faster & Cheaper Renewable Generation Connections

Adriana Laguna-Estopier - Low Carbon Project Manager

Smart Grids & Clean Power, June 5, 2013

Contents

- UK Power Networks
- Flexible Plug and Play Introduction
- Technical Problem and Proposed Solution
- Principles of Access and Commercial Packages
- Capacity Quota
- Commercial Framework for Flexible Plug and Play
- Customer Recruitment
- Conclusions and Next Steps

UK Power Networks

Scottish and Southern Energy SP Energy Networks Electricity North West Northern Powergrid **UK Power Networks** Western Power Distribution

	Total	% of industry
End customers (millions)	8	28 %
Service area (km2)	29,165	12 %
Underground network (km)	134,767	29 %
Overhead network (km)	47,391	15 %
Energy distributed (TWh)	89.4	28 %
New connections	130,768	35 %

Flexible Plug and Play

Objective: Cheaper and faster connection of DG to constrained parts of the network by trialing smart grid technologies and smart commercial agreements

Duration: 3 years: January 2012 - December 2014

Project Value: £9.7 million (6.7m funding from LCNF Tier 2)

Partners:

Flexible Plug and Play: Trial location

* FPP TRIAL INNOVATION ZONE AREA

HIGHLY UTILISED CAPACITY AVAILABLE SIGNIFICANT CAPACITY AVAILABLE

Location: Cambridgeshire

Surface: ~ 700km²

Network: 33kV and 11kV Network (2 Grid, 10 Primary substation sites)

Connected Wind Generation: 120MW

Planning & Delivery Stage: approx 270MW

Case Study 1: March Grid The challenge

Constraints

Reverse power flow limitation (N-1)

Occur at min Load max Gen

situations

Consequences

- Substation considered full
- Very expensive quotes for

connections to projects in the

vicinity (Distance or increased

voltage level)

Circuit breaker

Case Study 1: March Grid The solutions

Circuit

breaker

Constraints MEASURE

Reverse power flow limitation (N-1)

Solutions:

Generator

- ✓ Novel protection scheme
- Active Network Management

Load

- ✓ IP Communications
- ✓ Suitable commercial &

contractual framework

Principles of Access

• Mechanism for allocating curtailment between generators.

Commercial Packages

- Time Vintaging
- Capacity Auction
- Capacity Quota:
 - Based on defining a specific level of curtailment
 - Based on comparing the cost of curtailment to the cost of reinforcement

Capacity Quota

- Curtailment levels (MWh/yr) will increase as more capacity connects, increasing generators' lost revenues
- We plan to set the quota at the level where the cost of curtailment is equal or exceeds the cost of reinforcement

Framework for a Capacity Quota Rules to connect under FPP

- 1. Grandfathering existing customers
- 2. FPP customers connect to ANM
- 3. Principles of Access: Pro-rata curtailment to ANM generators
- Capacity Quota: UK Power Networks will limit the total capacity of generation connected within the constrained area to a preagreed cap
- 5. Managing the Quota
- 6. LIFO after Quota

Customer recruitment

- ✓ Customers **seeking connection** in the trial area
- Be proactive through stakeholder engagement
- Recruiting within the existing connections process
- ✓ Demonstrating a clear business case and **benefits to customers**

Wind Farm	33 kV	11 kV	Business as Usual offer*	Point of Connection	FPP offer
А		0.5	£1.9 m	11kV feeder - 10.5km	£ 235 k
В		2.5	£1.9 m	11kV feeder - 12.75km	£157 k
С		1	£2.0 m	11kV feeder - 9.5km	£ 385 k
D	10		£4.8 m	132/33kV site	£ 590 k
E		5	£1.2 m	132/33kV site	£ 650 k

*based on traditional reinforcement

Connection agreement template

First connection arrangement to include the following concepts:

- ✓ **Curtailment**: the action of limiting generation output
- Constraint: defines the specific location in the network that will have to be subject to curtailment
- Maximum Interruptible Capacity: declares MW connected under interruptible conditions by Active Network Management
- Capacity Limit: MW of installed capacity that will connect and get curtailed as a quota

Conclusions and Next Steps

- Each project represents more than 80% savings in connection cost
- ✓ **33.5MW quota** behind March Grid constraint
- ✓ 30MW currently in the pipeline
- Estimated 5.3% curtailment (reduction in annual output)
- Make interruptible connections a Business as Usual alternative
- Work with our customers to understand financing challenges
- Understand optimal cost allocation

Thank you

